Data visualization with seaborn matplotlib in Python
Zhijun / 2022-11-05
Data visualization Examples : The weight of chicks from different months and feed diet
Import packages
import os as os
from stat import FILE_ATTRIBUTE_SPARSE_FILE
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
Line plot
Chick_data.head()
## Unnamed: 0 weight Time Chick Diet
## 0 1 42 0 1 1
## 1 2 51 2 1 1
## 2 3 59 4 1 1
## 3 4 64 6 1 1
## 4 5 76 8 1 1
Chick_data = Chick_data.iloc[: , 1:]
Chick_data.head()
## weight Time Chick Diet
## 0 42 0 1 1
## 1 51 2 1 1
## 2 59 4 1 1
## 3 64 6 1 1
## 4 76 8 1 1
plt.figure(figsize=(12,9))
sns.lineplot(data=Chick_data, x="Time", y="weight", hue="Diet", style="Diet")
plt.legend(title='Diet', fontsize=18)
plt.xlabel('Time', fontsize=18);
plt.ylabel('Weight', fontsize=18);
plt.title('Plot of Chick weight and Time', fontsize=24)
plt.show()
Violin plot
# set a grey background
plt.figure(figsize=(12,9))
sns.set(style="darkgrid")
sns.violinplot( x=Chick_data["Diet"], y=Chick_data["weight"])
plt.xlabel('Diet', fontsize=20);
plt.ylabel('Weight', fontsize=20);
plt.title('Violin plot of Chick weight and Diet', fontsize=28)
plt.show()
Density chart
# set a grey background
plt.figure(figsize=(12,9))
sns.set(style="darkgrid")
sns.kdeplot(data=Chick_data, x="weight", hue="Diet", cut=0, fill=True, common_norm=False, alpha=1)
plt.xlabel('Weight', fontsize=20);
plt.ylabel('Density', fontsize=20);
plt.title('Density chart of Chick weight and Diet', fontsize=28)
plt.show()
Scatter plot
plt.figure(figsize=(12,9))
sns.lmplot(data = Fruits, x="Glucose", y="Fiber", fit_reg=False, hue='Group', legend=False, palette="Set2")
plt.xlabel('Glucose', fontsize=20);
plt.ylabel('Fiber', fontsize=20);
plt.title('Scatter plot of fruits composition', fontsize=20)
plt.legend(loc='best')
plt.tight_layout()
plt.show()
Histogram
sns.set_theme(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=True)
plt.figure(figsize=(12,9))
sns.histplot(data=Fruits, x="Vitamin", color="skyblue", label="Vitamin", kde=True)
sns.histplot(data=Fruits, x="Glucose", color="red", label="Glucose", kde=True)
sns.histplot(data=Fruits, x="Fiber", color="yellow", label="Fiber", kde=True).set(title='Histogram of fruits composition')
plt.xlabel('Fruits compositions', fontsize=20)
plt.ylabel('Numbers', fontsize=20)
plt.title('Histogram of fruits composition', fontsize=26)
plt.legend(loc='best', fontsize=18)
plt.tight_layout()
plt.show()
Box plot
sns.set(style="darkgrid")
sns.set_theme(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=True)
plt.figure(figsize=(12,9))
sns.boxplot(x=Fruits["Group"], y=Fruits["Glucose"]).set(title='Box plot of fruits composition')
plt.xlabel('Group', fontsize=20);
plt.ylabel('Glucose', fontsize=20);
plt.title('Box plot of fruits composition', fontsize=26)
plt.legend(loc='best', fontsize=18)
plt.tight_layout()
plt.show()